Flink1.12 SQL向Redis实时写数据
本文转载自微信公众号「肌肉码农」,作者邹学。转载本文请联系肌肉码农公众号。
插件名称:flink-connector-redis
插件地址:https://github.com/jeff-zou/flink-connector-redis.git
项目介绍
基于bahir-flink二次开发,使它支持SQL直接定义写入redis,用户通过DDL指定自己需要保存的字段。
使用方法:
命令行执行 mvn package -DskipTests=true打包后,将生成的包flink-connector-redis_2.12-1.11.1.jar引入flink lib中即可,无需其它设置。
重构介绍:
相对上一个版本简化了参数设置,思路更清晰,上一版本字段的值会根据主键等条件来自动生成,这要求使用者需要了解相关规则,有一定的学习成本并且容易埋坑,重构后字段的值由用户在DDL中显示地指定,如下:
key-column=username,value-column=passport, //直接指定字段名取消了必须有主键的限制,使用更简单,如果有多个字段组合成key或者value,需要用户在DML中使用concat_ws等方式组装,不再是插件在后台用不可见字符拼装。
使用示例:
1.SQL方式示例代码路径: src/test/java/org.apache.flink.streaming.connectors.redis.table.SQLInsertTest.java
set示例,相当于redis命令: set test test11
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tEnv = StreamTableEnvironment.create(env, environmentSettings); String ddl = "create table sink_redis(username VARCHAR, passport VARCHAR) with ( connector=redis, " + "host=10.11.80.147,port=7001, redis-mode=single,password=******,key-column=username,value-column=passport,command=set)" ; tEnv.executeSql(ddl); String sql = " insert into sink_redis select * from (values (test, test11))"; TableResult tableResult = tEnv.executeSql(sql); tableResult.getJobClient().get() .getJobExecutionResult() .get(); 2.DataStream方式示例代码路径:
src/test/java/org.apache.flink.streaming.connectors.redis.datastream.DataStreamInsertTest.java
hset示例,相当于redis命令:hset tom math 150
Configuration configuration = new Configuration(); configuration.setString(RedisOptions.KEY_COLUMN, "name"); configuration.setString(RedisOptions.FIELD_COLUMN, "subject"); //对应hash的field、 sorted set的score configuration.setString(RedisOptions.VALUE_COLUMN, "score"); configuration.setString(REDIS_MODE, REDIS_CLUSTER); configuration.setString(REDIS_COMMAND, RedisCommand.HSET.name()); RedisMapper redisMapper = RedisHandlerServices .findRedisHandler(RedisMapperHandler.class, configuration.toMap()) .createRedisMapper(configuration); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); GenericRowData genericRowData = new GenericRowData(3); genericRowData.setField(0, "tom"); genericRowData.setField(1, "math"); genericRowData.setField(2, "150"); DataStream<GenericRowData> dataStream = env.fromElements(genericRowData); TableSchema tableSchema = new TableSchema.Builder() .field("name", DataTypes.STRING().notNull()).field("subject", DataTypes.STRING()).field("score", DataTypes.INT()).build(); FlinkJedisConfigBase conf = getLocalRedisClusterConfig(); RedisSink redisSink = new RedisSink<>(conf, redisMapper, tableSchema); dataStream.addSink(redisSink); env.execute("RedisSinkTest");扫一扫,关注我们