kafka storm hbase

发布时间:2025-05-25 00:10:07 作者:益华网络 来源:undefined 浏览量(1) 点赞(1)
摘要:kafka+storm+hbase实现计算WordCount。 (1)表名:wc

kafka+storm+hbase实现计算WordCount。

(1)表名:wc

(2)列族:result

(3)RowKey:word

(4)Field:count

1、 解决:

1 )第一步:首先准备 kafka storm hbase 相关 jar 包。 依赖如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
<project xmlns= "http://maven.apache.org/POM/4.0.0"  xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"  xsi:schemaLocation= "http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd" >
<modelVersion> 4.0 . 0 </modelVersion>
<groupId>com</groupId>
<artifactId>kafkaSpout</artifactId>
<version> 0.0 . 1 -SNAPSHOT</version>
 
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version> 0.9 . 3 </version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version> 0.9 . 3 </version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2. 10 </artifactId>
<version> 0.8 . 1.1 </version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version> 0.99 . 2 </version>
<exclusions>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
</exclusions>
</dependency>
 
<dependency>
 
<groupId>com.google.protobuf</groupId>
 
<artifactId>protobuf-java</artifactId>
 
<version> 2.5 . 0 </version>
 
</dependency>
 
<dependency>
<groupId>org.apache.curator</groupId>
<artifactId>curator-framework</artifactId>
<version> 2.5 . 0 </version>
<exclusions>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
               
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version> 1.7 </version>
<scope>system</scope>
<systemPath>C:\Program Files\Java\jdk1. 7 .0_51\lib\tools.jar</systemPath>
</dependency>    
 
</dependencies>
  
<repositories>
<repository>
<id>central</id>
<url>http: //repo1.maven.org/maven2/</url>
<snapshots>
<enabled> false </enabled>
</snapshots>
<releases>
<enabled> true </enabled>
</releases>
</repository>
<repository>
<id>clojars</id>
<url>https: //clojars.org/repo/</url>
<snapshots>
<enabled> true </enabled>
</snapshots>
<releases>
<enabled> true </enabled>
</releases>
</repository>
<repository>
<id>scala-tools</id>
<url>http: //scala-tools.org/repo-releases</url>
<snapshots>
<enabled> true </enabled>
</snapshots>
<releases>
<enabled> true </enabled>
</releases>
</repository>
<repository>
<id>conjars</id>
<url>http: //conjars.org/repo/</url>
<snapshots>
<enabled> true </enabled>
</snapshots>
<releases>
<enabled> true </enabled>
</releases>
</repository>
</repositories>
 
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version> 3.1 </version>
<configuration>
<source> 1.6 </source>
<target> 1.6 </target>
<encoding>UTF- 8 </encoding>
<showDeprecation> true </showDeprecation>
<showWarnings> true </showWarnings>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase> package </phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

(2) kafka 发来的数据通过 levelSplit bolt 进行分割处理,然后再发送到下一个 Bolt 中。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package  com.kafka.spout;
 
import  java.util.regex.Matcher;
import  java.util.regex.Pattern;
import  backtype.storm.topology.BasicOutputCollector;
import  backtype.storm.topology.OutputFieldsDeclarer;
import  backtype.storm.topology.base.BaseBasicBolt;
import  backtype.storm.tuple.Fields;
import  backtype.storm.tuple.Tuple;
import  backtype.storm.tuple.Values;
  
public  class  LevelSplit  extends  BaseBasicBolt {
  
public  void  execute(Tuple tuple, BasicOutputCollector collector) {
String words = tuple.getString( 0 ).toString(); //the cow jumped over the moon
String []va=words.split( " " );
for (String word : va)
{
collector.emit( new  Values(word));
}
 
}
   
public  void  declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare( new  Fields( "word" ));
}
 
}

(3) 将levelSplit 的Bolt 发来的数据到levelCount 的Bolt 中进行计数处理,然后发送到hbase (Bolt )中。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
package  com.kafka.spout;
 
import  java.util.HashMap;
import  java.util.Map;
import  java.util.Map.Entry;
 
import  backtype.storm.topology.BasicOutputCollector;
import  backtype.storm.topology.OutputFieldsDeclarer;
import  backtype.storm.topology.base.BaseBasicBolt;
import  backtype.storm.tuple.Fields;
import  backtype.storm.tuple.Tuple;
import  backtype.storm.tuple.Values;
  
public  class  LevelCount  extends  BaseBasicBolt {
Map<String, Integer> counts =  new  HashMap<String, Integer>();
 
public  void  execute(Tuple tuple, BasicOutputCollector collector) {
// TODO Auto-generated method stub
String word = tuple.getString( 0 );
Integer count = counts.get(word);
if  (count ==  null )
count =  0 ;
count++;
counts.put(word, count);
 
for  (Entry<String, Integer> e : counts.entrySet()) {
//sum += e.getValue();
System.out.println(e.getKey()
+  "----------->"  +e.getValue());
}
collector.emit( new  Values(word, count));     
}
 
public  void  declareOutputFields(OutputFieldsDeclarer declarer) {
// TODO Auto-generated method stub
declarer.declare( new  Fields( "word" ,  "count" ));
}
}

(4) 准备连接 kafka hbase 条件以及 设置整个拓扑结构并且提交拓扑。代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
package  com.kafka.spout;
  
import  java.util.HashMap;
import  java.util.Map;
 
import  com.google.common.collect.Maps;
 
//import org.apache.storm.guava.collect.Maps;
  
import  backtype.storm.Config;
import  backtype.storm.LocalCluster;
import  backtype.storm.StormSubmitter;
import  backtype.storm.generated.AlreadyAliveException;
import  backtype.storm.generated.InvalidTopologyException;
import  backtype.storm.spout.SchemeAsMultiScheme;
import  backtype.storm.topology.TopologyBuilder;
import  backtype.storm.tuple.Fields;
import  backtype.storm.utils.Utils;
import  storm.kafka.BrokerHosts;
import  storm.kafka.KafkaSpout;
import  storm.kafka.SpoutConfig;
import  storm.kafka.ZkHosts;
   
public  class  StormKafkaTopo {
public  static  void  main(String[] args) {
   
BrokerHosts brokerHosts =  new  ZkHosts( "zeb,yjd,ylh" );
SpoutConfig spoutConfig =  new  SpoutConfig(brokerHosts,  "yjd" ,  "/storm" ,  "kafkaspout" );
Config conf =  new  Config();  
spoutConfig.scheme =   new  SchemeAsMultiScheme( new  MessageScheme());   
 
SimpleHBaseMapper mapper =  new  SimpleHBaseMapper();
mapper.withColumnFamily( "result" );
mapper.withColumnFields( new  Fields( "count" ));
mapper.withRowKeyField( "word" );
 
Map<String, Object> map = Maps.newTreeMap();
map.put( "hbase.rootdir" ,  "hdfs://zeb:9000/hbase" );
map.put( "hbase.zookeeper.quorum" ,  "zeb:2181,yjd:2181,ylh:2181" );
 
// hbase-bolt
HBaseBolt hBaseBolt =  new  HBaseBolt( "wc" , mapper).withConfigKey( "hbase.conf" );
 
conf.setDebug( true );
conf.put( "hbase.conf" , map);
   
TopologyBuilder builder =  new  TopologyBuilder();
builder.setSpout( "spout" ,  new  KafkaSpout(spoutConfig));
builder.setBolt( "split" ,  new  LevelSplit(),  1 ).shuffleGrouping( "spout" );
builder.setBolt( "count" ,  new  LevelCount(),  1 ).fieldsGrouping( "split" ,  new  Fields( "word" ));
builder.setBolt( "hbase" , hBaseBolt,  1 ).shuffleGrouping( "count" );
 
if (args !=  null  && args.length >  0 ) {
//提交到集群运行
try  {
StormSubmitter.submitTopology(args[ 0 ], conf, builder.createTopology());
}  catch  (AlreadyAliveException e) {
e.printStackTrace();
}  catch  (InvalidTopologyException e) {
e.printStackTrace();
}
}  else  {
//本地模式运行
LocalCluster cluster =  new  LocalCluster();
cluster.submitTopology( "Topotest1121" , conf, builder.createTopology());
Utils.sleep( 1000000 );
cluster.killTopology( "Topotest1121" );
cluster.shutdown();
}          
}
}

(5) 在kafka 端用控制台生产数据,如下:

2、 运行结果截图:

 

3、 遇到的问题:

(1 )把所有的工作做好后,提交了拓扑,运行代码。发生了错误1 ,如下:

 

解决:原来是因为依赖版本要统一的问题,最后将版本修改一致后,成功解决。

(2) 发生了错误2 ,如下:

 

解决:原来是忘记开hbase 中的HMaster 和HRegionServer 。启动后问题成功解决。

http://shenzhen.offcn.com/

二维码

扫一扫,关注我们

声明:本文由【益华网络】编辑上传发布,转载此文章须经作者同意,并请附上出处【益华网络】及本页链接。如内容、图片有任何版权问题,请联系我们进行处理。

感兴趣吗?

欢迎联系我们,我们愿意为您解答任何有关网站疑难问题!

您身边的【网站建设专家】

搜索千万次不如咨询1次

主营项目:网站建设,手机网站,响应式网站,SEO优化,小程序开发,公众号系统,软件开发等

立即咨询 15368564009
在线客服
嘿,我来帮您!