三大相关系数:pearson, spearman, kendall

发布时间:2025-05-24 17:43:41 作者:益华网络 来源:undefined 浏览量(0) 点赞(0)
摘要:统计学中的三大相关性系数:pearson, spearman, kendall,他们反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1。 0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。

统计学中的三大相关性系数:pearson, spearman, kendall,他们反应的都是两个变量之间变化趋势的方向以及程度,其值范围为-1到+1。 0表示两个变量不相关,正值表示正相关,负值表示负相关,值越大表示相关性越强。

1. person correlation coefficient(皮尔森相关性系数)     皮尔逊相关系数通常用r或ρ表示,度量两变量X和Y之间相互关系(线性相关)(1)公式    皮尔森相关性系数的值等于它们之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX, σY)。(2)数据要求    a.正态分布      它是协方差与标准差的比值,并且在求皮尔森相关性系数以后,通常还会用t检验之类的方法来进行皮尔森相关性系数检验,而t检验是基于数据呈正态分布的假设的。     b.实验数据之间的差距不能太大      比如:研究人跑步的速度与心脏跳动的相关性,如果人突发心脏病,心跳为0(或者过快与过慢),那这时候我们会测到一个偏离正常值的心跳,如果我们把这个值也放进去进行相关性分析,它的存在会大大干扰计算的结果的。(3)实例代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import pandas  as  pd
import numpy  as  np
 
#原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5])
 
X1.mean() #平均值# 3.5
Y1.mean() #2.4
X1. var () #方差#3.5
Y1. var () #2.9760000000000004
 
X1.std() #标准差不能为0# 1.8708286933869707
Y1.std() #标准差不能为0#1.725108692227826
X1.cov(Y1) #协方差#3.0600000000000005
 
X1.corr(Y1,method= "pearson" ) #皮尔森相关性系数 #0.948136664010285
X1.cov(Y1)/(X1.std()*Y1.std()) #皮尔森相关性系数 # 0.948136664010285
2. spearman correlation coefficient(斯皮尔曼相关性系数)    斯皮尔曼相关性系数,通常也叫斯皮尔曼秩相关系数。“秩”,可以理解成就是一种顺序或者排序,那么它就是根据原始数据的排序位置进行求解 (1)公式   首先对两个变量(X, Y)的数据进行排序,然后记下排序以后的位置(X’, Y’),(X’, Y’)的值就称为秩次,秩次的差值就是上面公式中的di,n就是变量中数据的个数,最后带入公式就可求解结果。 (2)数据要求   因为是定序,所以我们不用管X和Y这两个变量具体的值到底差了多少,只需要算一下它们每个值所处的排列位置的差值,就可以求出相关性系数了 (3)实例代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import pandas  as  pd
import numpy  as  np
 
#原始数据
X1=pd.Series([1, 2, 3, 4, 5, 6])
Y1=pd.Series([0.3, 0.9, 2.7, 2, 3.5, 5])
 
#处理数据删除Nan
x1=X1.dropna()
y1=Y1.dropna()
n=x1.count()
x1.index=np.arange(n)
y1.index=np.arange(n)
 
#分部计算
d=(x1.sort_values().index-y1.sort_values().index)**2
dd=d.to_series().sum()
 
p=1-n*dd/(n*(n**2-1))
 
#s.corr()函数计算
r=x1.corr(y1,method= spearman )
print(r,p) #0.942857142857143 0.9428571428571428

  3. kendall correlation coefficient(肯德尔相关性系数)

   肯德尔相关性系数,又称肯德尔秩相关系数,它也是一种秩相关系数,不过它所计算的对象是分类变量。    分类变量可以理解成有类别的变量,可以分为:    (1) 无序的,比如性别(男、女)、血型(A、B、O、AB);    (2) 有序的,比如肥胖等级(重度肥胖,中度肥胖、轻度肥胖、不肥胖)。    通常需要求相关性系数的都是有序分类变量。 (1)公式   R=(P-(n*(n-1)/2-P))/(n*(n-1)/2)=(4P/(n*(n-1)))-1   注:设有n个统计对象,每个对象有两个属性。将所有统计对象按属性1取值排列,不失一般性,设此时属性2取值的排列是乱序的。设P为两个属性值排列大小关系一致的统计对象对数 (2)数据要求   类别数据或者可以分类的数据 (3)实例代码
1
2
3
4
5
6
7
import pandas  as  pd
import numpy  as  np
 
#原始数据
x= pd.Series([3,1,2,2,1,3])
y= pd.Series([1,2,3,2,1,1])
r = x.corr(y,method= "kendall" ) #-0.2611165

http://shenzhen.offcn.com/

二维码

扫一扫,关注我们

声明:本文由【益华网络】编辑上传发布,转载此文章须经作者同意,并请附上出处【益华网络】及本页链接。如内容、图片有任何版权问题,请联系我们进行处理。

感兴趣吗?

欢迎联系我们,我们愿意为您解答任何有关网站疑难问题!

您身边的【网站建设专家】

搜索千万次不如咨询1次

主营项目:网站建设,手机网站,响应式网站,SEO优化,小程序开发,公众号系统,软件开发等

立即咨询 15368564009
在线客服
嘿,我来帮您!